Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 89(4): 2647-2655, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236849

RESUMO

The impacts of white-rot fungi on altering wood chemistry have been studied mostly in vitro. However, in vivo approaches may enable better assessment of the nature of interactions between saprotrophic fungi and host tree in nature. Hence, decayed and sound wood samples were collected from a naturally infected tree (Carpinus betulus L.). Fruiting bodies of the white rot fungus Trametes versicolor grown on the same tree were identified using rDNA ITS sequencing. Chemical compositions (cellulose and lignin) of both sound and infected wood were studied. FT-IR spectroscopy was used to collect spectra of decayed and un-decayed wood samples. The results of chemical compositions indicated that T. versicolor reduced cellulose and lignin in similar quantities. Fungal activities in decayed wood causes serious decline in pH content. The amount of alcohol-benzene soluble extractives was severely decreased, while a remarkable increase was found in 1% sodium hydroxide soluble and hot water extractive contents in the decayed wood samples, respectively. FT-IR analyses demonstrated that T. versicolor causes simultaneous white rot in the hornbeam tree in vivo which is in line with in vitro experiments.


Assuntos
Trametes/crescimento & desenvolvimento , Árvores/microbiologia , Madeira/microbiologia , Fenômenos Ecológicos e Ambientais , Espectroscopia de Infravermelho com Transformada de Fourier , Árvores/química , Madeira/química
2.
An. acad. bras. ciênc ; 89(4): 2647-2655, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886848

RESUMO

ABSTRACT The impacts of white-rot fungi on altering wood chemistry have been studied mostly in vitro. However, in vivo approaches may enable better assessment of the nature of interactions between saprotrophic fungi and host tree in nature. Hence, decayed and sound wood samples were collected from a naturally infected tree (Carpinus betulus L.). Fruiting bodies of the white rot fungus Trametes versicolor grown on the same tree were identified using rDNA ITS sequencing. Chemical compositions (cellulose and lignin) of both sound and infected wood were studied. FT-IR spectroscopy was used to collect spectra of decayed and un-decayed wood samples. The results of chemical compositions indicated that T. versicolor reduced cellulose and lignin in similar quantities. Fungal activities in decayed wood causes serious decline in pH content. The amount of alcohol-benzene soluble extractives was severely decreased, while a remarkable increase was found in 1% sodium hydroxide soluble and hot water extractive contents in the decayed wood samples, respectively. FT-IR analyses demonstrated that T. versicolor causes simultaneous white rot in the hornbeam tree in vivo which is in line with in vitro experiments.


Assuntos
Árvores/microbiologia , Madeira/microbiologia , Trametes/crescimento & desenvolvimento , Árvores/química , Madeira/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Ecológicos e Ambientais
3.
J Environ Manage ; 117: 263-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23391756

RESUMO

This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level.


Assuntos
Conservação dos Recursos Naturais/métodos , Materiais de Construção , Oryza , Força Compressiva , Incineração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...